Approximate Inverse Preconditioners for Some Large Dense Random Electrostatic Interaction Matrices
نویسنده
چکیده
A sparse mesh-neighbour based approximate inverse preconditioner is proposed for a type of dense matrices whose entries come from the evaluation of a slowly decaying free space Green’s function at randomly placed points in a unit cell. By approximating distant potential fields originating at closely spaced sources in a certain way, the preconditioner is given properties similar to, or better than, those of a standard least squares approximate inverse preconditioner while its setup cost is only that of a diagonal block approximate inverse preconditioner. Numerical experiments on iterative solutions of linear systems with up to four million unknowns illustrate how the new preconditioner drastically outperforms standard approximate inverse preconditioners of otherwise similar construction, and especially so when the preconditioners are very
منابع مشابه
The inverse fast multipole method: using a fast approximate direct solver as a preconditioner for dense linear systems
Although some preconditioners are available for solving dense linear systems, there are still many matrices for which preconditioners are lacking, in particular in cases where the size of the matrix N becomes very large. Examples of preconditioners include ILU preconditioners that sparsify the matrix based on some threshold, algebraic multigrid, and specialized preconditioners, e.g., Calderón a...
متن کاملSome Preconditioners for Block Pentadiagonal Linear Systems Based on New Approximate Factorization Methods
In this paper, getting an high-efficiency parallel algorithm to solve sparse block pentadiagonal linear systems suitable for vectors and parallel processors, stair matrices are used to construct some parallel polynomial approximate inverse preconditioners. These preconditioners are appropriate when the desired target is to maximize parallelism. Moreover, some theoretical results about these pre...
متن کاملA two-level sparse approximate inverse preconditioner for unsymmetric matrices
Sparse approximate inverse (SPAI) preconditioners are effective in accelerating iterative solutions of a large class of unsymmetric linear systems and their inherent parallelism has been widely explored. The effectiveness of SPAI relies on the assumption of the unknown true inverse admitting a sparse approximation. Furthermore, for the usual right SPAI, one must restrict the number of non-zeros...
متن کاملApproximate Inverse Techniques for Block-Partitioned Matrices
This paper proposes some preconditioning options when the system matrix is in block-partitioned form. This form may arise naturally, for example from the incom-pressible Navier-Stokes equations, or may be imposed after a domain decomposition reordering. Approximate inverse techniques are used to generate sparse approximate solutions whenever these are needed in forming the preconditioner. The s...
متن کاملAn Algebraic Approach for H-matrix Preconditioners∗
Hierarchical matrices (H-matrices) approximate matrices in a data-sparse way, and the approximate arithmetic for H-matrices is almost optimal. In this paper we present an algebraic approach to constructing H-matrices which combines multilevel clustering methods with the H-matrix arithmetic to compute the H-inverse, H-LU, and the H-Cholesky factors of a matrix. Then the H-inverse, H-LU or H-Chol...
متن کامل